Partager cette page :

Stochastic representation of fluid flow dynamics

le 21 novembre 2018

11h - Groupe de travail "Applications des Mathématiques"

ENS Rennes salle 7

Séminaire d'Étienne Mémin (Rennes, INRIA) au groupe de travail "Applications des mathématiques"

Groupe de travail

/medias/photo/gt-applimaths_1418650100525-png

Lien vers la page Web de l'orateur

Résumé :
In this talk I will describe a formalism to derive in a systematic way a large-scale stochastic representation of fluid flows dynamics that enables to take into account the inherent uncertainty attached to the flow evolution. The uncertainty introduced here is described through a random field, and aims at representing principally the small-scale effects that are neglected in the large-scale evolution model. The resulting large-scale dynamic system is obtained from a stochastic representation of the Reynolds transport theorem. This formalism enables, in the very same way as in the deterministic case, a physically relevant derivation (i.e. from the usual conservation law) of the sought evolution laws. We will review and discuss such a representation for some classical geophysical models. We will provide also several examples on its use in different contexts.

Thématique(s)
Recherche - Valorisation
Contact
Nicolas Crouseilles, Thibaut Deheuvels et Frédéric Marbach

Mise à jour le 19 novembre 2018