Partager cette page :

Improved Asymptotic Expansion in the Light of the Linear Boltzmann Equation

le 13 avril 2011

14H - Groupe de travail "Applications des Mathématiques"

ENS Rennes Bâtiment Sauvy, Salle 5 (rdc)

Séminaire de Peter Kauf (SAM, ETH Zurich) au groupe de travail "Applications des mathématiques"

Lien vers la page Web de l'orateur Résumé : In the talk, we will derive improved asymptotic expansions for a rather general class of differential equations. The technique for this has been developed in the framework of (linear) kinetic theory. We will sketch how to construct a 'scale induced' closure for a hierarchy of differential equations stemming from the (linear) Boltzmann equation. We will present (and partially prove) a stability and a convergence result for the scale induced closure, and compare it to classical, more simple approximations for kinetic equa- tions like Chapman-Enskog and Grad. A kinetic toy model will serve as numerical illustration of our closure procedure. With the structure of this toy model, we will also see that our construction extends to more general differential equations.

Thématique(s)
Recherche - Valorisation
Contact
Erwan Faou et Yannick Privat

Mise à jour le 8 avril 2011