Exponential integrators - characteristics and stiff order conditions
le 5 juin 2013
14H - Groupe de travail "Applications des Mathématiques"ENS Rennes Bâtiment Sauvy, Salle 5 (rdc)
Séminaire de Alexander Ostermann (Université de Innsbruck) au groupe de travail "Applications des mathématiques"
Lien vers la page Web de l'orateur
Abstract: Exponential integrators are a competitive class of methods for the numerical solution of stiff differential equations. We focus in this talk on the parabolic case where the interators treat the linear part of problem exactly and the nonlinearity in an explicit way. In the first part, we illustrate important features of such integrators and put exponential integrators into an historic perspective. In the second part, we discuss order conditions by extening the well-known concept of B-series to exponential integrators. As we are mainly interested in the stiff case, Taylor series expansions have their limitations. Our approach is based on the variation-of-constants formulat. By truncating the arising exponential B-series to a certain order (which requires regularity of the considered exact solution) we are able to identify the sought-after order conditions. In particular, we show how the stiff order conditions of arbitrary order can be obtained in a simple way from a set of recursively defined trees.
- Thématique(s)
- Recherche - Valorisation
- Contact
- Thibaut Deheuvels et Gilles Vilmart
Mise à jour le 3 juin 2013
Groupe de Travail "Applications des Mathématiques"
le mercredi à 14H00 en salle 5
Contacts : Thibaut Deheuvels et Gilles Vilmart.
Le groupe de travail propose des exposés centrés autour de l'analyse, l'analyse numérique et le calcul scientifique. L'accent est mis sur une forte interactivité avec les auditeurs.
Comment venir à l'ENS ?