Partager cette page :

Approximation of effective coefficients in stochastic homogenization using a boundary integral approach

le 31 janvier 2018

11h - Groupe de travail "Applications des Mathématiques"

ENS Rennes Bâtiment Sauvy, Salle 5 (rdc)

Séminaire de Virginie Ehrlacher (CERMICS, ENPC) au groupe de travail "Applications des mathématiques"

Groupe de travail

/medias/photo/gt-applimaths_1418650100525-png

Lien vers la page Web de l'orateur

Résumé :
A very efficient algorithm has recently been introduced in [1] in order to approximate the solution of implicit solvation models for molecules. The main ingredient of this algorithm relies in the clever use of a boundary integral formulation of the problem to solve. The aim of this talk is to present how such an algorithm can be adapted in order to compute efficiently effective coefficients in stochastic homogenization for random media with spherical inclusions. To this aim, the definition of new approximate corrector problems and approximate effective coefficients is needed and convergence results in the spirit of [2] are proved for this new formulation. Some numerical test cases will illustrate the behaviour of this method.
This is a joint work with Eric Cancès, Frédéric Legoll and Benjamin Stamm.

[1] "Domain decomposition for implicit solvation models", Eric Cancès, Yvon Maday, Benjamin Stamm, The Journal of Chemical Physics 139 (2013)
[2] "Approximations of effective coefficients in stochastic homogenization", Alain Bourgeat, Andrey Piatnitski, Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 40 (2004) page 153-165.  

Thématique(s)
Recherche - Valorisation
Contact
Thibaut Deheuvels et Nicolas Crouseilles

Mise à jour le 29 janvier 2018