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Modeling

Free surface flows

Tsunamis : gravity waves created by earthquakes or submarine landslides
free-surface flow

Full fluid equations for free surface flows :

two-phase Navier-Stokes equations (air/water)

free surface potential Euler equations

limited to individual waves propagating over a few meters

computationally very intensive (3-dimensional,. . .)

necessity of finding simplified equations



Modeling

Long wave approximation I

Characteristic lengths (during propagation) :

wavelength λ : 100 km

water depth h0 : 4 km

wave amplitude a : 0.5 m

Dimensionless parameters :

nonlinearity parameter ε =
a

h0
' 10−4.

dispersion parameter µ2 =

(
ho

λ

)2

' 10−4.

N.B. linear dispersion relation ( constant depth h )

ω(k) =
2π

λ(k)
=

√
g |~k |tanh(|~k|h).



Modeling

Long wave approximation II

Asymptotic regimes for free surface potential equations :

retain only terms in O(ε+ µ2)
Boussinesq equations

retain only terms in O(ε)
nonlinear shallow-water equations

retain only terms in O(1)
linear shallow water equations
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Equations and numerical approximation

Nonlinear shallow water equations

integrated along the vertical coordinate
2-dimensional model

the free surface is assumed to be a function z = η(x , y , t)

dispersive effects neglected

hyperbolic system of conservation laws



Equations and numerical approximation

Nonlinear shallow water equations

η(x , y , t) : free surface amplitude, h(x , y , t) : bathymetry, H = h + η.

Mass conservation :

∂tH +∇ ·
(
H~u
)

= 0,

Momentum conservation :

∂t(H~u) +∇ · (H~u ⊗ ~u) +∇(g
H2

2
) = gH∇h + S(H, ~u),

where S is a source term modeling for instance :

Coriolis force : S(H, ~u) = Ω× ~u
bottom friction, using semi-empirical engineering formulas :

Chézy law S(H, ~u) = −Cf g~u |~u|
Manning-Strickler law, Darcy-Weisbach law . . .



Equations and numerical approximation

Systems of conservation laws

Rewrite equations as :

∂tw +∇ · (F(w)) = S(w),

where

w : vector of conservative variables, w = (H,H~u)

F : advection flux, F(H, ~u) = (H~u,H~u ⊗ ~u + g H2

2 Id)

S : source terms, S(H, ~u) = (0, gH∇h + S(H, ~u))



Equations and numerical approximation

Finite volumes framework

Integrate on a control volume :

d

dt

∫
Ω

w dΩ−
∫

∂K
F(w) · ~n dσ =

∫
K
S(w) dΩ.

Introduce cell averages (cell centered finite volumes) :

wK (t) =

∫
Ω

w(t, .) dΩ.

Question : express the normal fluxes (F · ~n)|∂K in terms of {wK}K∈Ω

numerical fluxes



Equations and numerical approximation

Finite volume framework – numerical fluxes

FVCF : finite volumes with characteristic fluxes
([Ghidaglia, Kumbaro, Le Coq ’96])
Flux across the triangle edge shared by triangles K and L is :

Φ(wK ,wL,~nKL) =
Fn(wK ) + Fn(wL)

2
− U(µ,~nKL)

Fn(wK )−Fn(wL)

2

where µ is a mean state :

µ =
vol(K )wK + vol(L)wL

vol(K ) + vol(L)

and U is the sign matrix :

U(w ,~n) = sign(An) = Rsign(Λ)R−1, An =
∂F · n(w)

∂w

Remark : in our case, U can be computed analytically



Equations and numerical approximation

Finite volume framework – numerical fluxes

Other numerical flux implemented : HLL (Harten, Lax, Van Leer ’83)



Equations and numerical approximation

Finite volume framework – 2nd order spatial discretisation

MUSCL type 2nd order discretisation

Search w in the class of affine-by-cell functions :

wK (~x , t) = wK + (∇w)|K (~x − ~x0),

where x0 is the barycenter of K

Gradient (∇w)K is reconstructed from {wK}K∈Ω

least square method

Need a slope limiter (finite volumes for NL hyperbolic systems)

Barth-Jespersen limiter



Equations and numerical approximation

Numerical approximation – additional difficulties

2 additional difficulties (crucial for tsunami applications) :

Runup and rundown : at H = 0, the system loses its hyperbolicity

source term gH∇h : numerical instabilities arise for steep bathymetry
gradients if (some) static solutions are not discretely preserved

« well-balanced » schemes



Equations and numerical approximation

Numerical approximation – additional difficulties

runup/rundown treatment :

Specific Riemann problem for dry/wet interface :

dxs

dt
:= us = uL + 2

√
ghL

dxs

dt
:= us = uR − 2

√
ghR

source term treatment

« well-balanced » scheme : modified H variable in fluxes computation
(scheme stays conservative) ([Audusse ’05])



Equations and numerical approximation

Time integration

Strong stability preserving Runge-Kutta schemes SSP–RK
[Gottlieb & Shu ’98] :

explicit in time

wide stability region

nonlinearly stable and optimal for CFL

More precisely, we use SSP–RK4 (3) ([Spiteri & Ruuth ’02]), 3rd 4-stage
scheme with CFL = 2 :

u1 = un + 1
2dtL(un),

u2 = u1 + 1
2dtL(u1),

u3 = 2
3un + 1

3u2 + 1
6dtL(un),

un+1 = u3 + 1
2dtL(u3).
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Presentation of Volna

Introduction

VOLNA : research code for the numerical simulation of water waves, used
for prototyping operational codes

Domains of applications

tsunami simulations (seismic, landslides)

storm waves simulations (surges)

Needs

computational domains of ' 10 to 100 wavelengths

precise, efficient

robust

tradeoff between precision/efficiency

handle realistic scenarios



Presentation of Volna

VOLNA

VOLNA code

preprocessing solver postprocessing

Python, Gmsh, librairies C++ VTK, Paraview

Features

solves the nonlinear shallow water equations

order 2 in space, 3 in time

semi-automated preprocessing for data acquisition

arbitrary varying in time bathymetry & boundary conditions

unstructured meshes :
complex geometries
static adaptivity (refinement near shorelines, steep bathy. gradients,. . .)

precision where needed
can partially alleviate numerical difficulties



Presentation of Volna

Preprocessing

Relies on open source libraries, and the Python scripting language

data acquisition

IO : arbitrary geospatial data handling GDAL/OGR

geographic to local coordinates projection Proj.4

scattered data interpolation : natural neighbor interpolation
Pavel Sakov, http://www.marine.csiro.au/~sak007/

complex geometries :

boolean operations on plane surfaces GEOS

meshing Gmsh

http://www.marine.csiro.au/~sak007/
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Numerical results

Numerical results

validation against 4 test cases, 2 analytical, 2 experimental

statically refined meshes (in shallow waters) are systematically used to
reduce computational time.

Fig.: mesh for Catalina 2 test case

no bottom friction ( e.g. no free parameter )



Numerical results

Catalina 1 – analytical

runup on a plane sloping beach
comparison with analytical solution
[Carrier & Greenspan ’58], [Carrier, Wu & Yeh ’03]

steep test case (strong bathymetry gradient) :

Fig.: initial data



Numerical results

Catalina 1 – analytical

runup on a plane sloping beach
comparison with analytical solution
[Carrier & Greenspan ’58], [Carrier, Wu & Yeh ’03]

steep test case (strong bathymetry gradient) :

Fig.: initial data + bathymetry



Numerical results

Catalina 1 – analytical

globally good agreement
discrepancies near the shoreline (VOLNA results comparable to other
shallow water codes) ; may be due to

numerics
the fact that the analytical solution is not exact



Numerical results

Catalina 2 – experimental

205 m long wave tank experiment

reproduces at 1/400th scale the Okushiri tsunami (Japan, 1993)

Complex 3D bathymetry



Numerical results

Catalina 2 – experimental
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Catalina 2 – experimental



Numerical results

Catalina 2 – experimental



Numerical results

Catalina 2 – experimental



Numerical results

Catalina 2 – experimental



Numerical results

Catalina 3 – analytical landslide

Comparison with analytical solution of the linearized shallow-water
equations with a moving bottom (forcing term)
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Numerical results
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Numerical results

Catalina 3 – analytical landslide

Comparison with analytical solution of the linearized shallow-water
equations with a moving bottom (forcing term)



Numerical results

Catalina 4 – wave tank landslide

comparison with wave tank experiments ([Synolakis & Raichlen ’03])

difficult test case for NSWE equations



Numerical results

Catalina 4 – wave tank landslide

Preliminary results

reasonably good agreement except directly above the wedge (not
shown)

wave breaking, resolution too coarse, limits of NSWE ?



Numerical results

Catalina 4 – wave tank landslide

Preliminary results

reasonably good agreement except directly above the wedge (not
shown)

wave breaking, resolution too coarse, limits of NSWE ?



Numerical results

Conclusion

NSWE solved by FVM method with specific treatment of runup and
source terms realizes a good trade-off between accuracy, robustness
and efficiency for tsunami simulations

static mesh refinement helps to further alleviate numerical
incertainties and save computational time.
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Work in progress

Dispersive effects

inclusion of dispersive effects (Boussinesq equations) in a finite
volumes framework



Work in progress

Tsunamis simulations

Java tsunami (2006)

Initial data : Okada solution (elastodynamics)
bathymetry : GEBCO dataset

Fig.: Free surface (km) at t = 0, 15 and 30 minutes

underwater landslide tsunami scenario in the Saint-Laurent river



Work in progress

Parallelization

domain decomposition : split the mesh in sub meshes of equal size
while minimizing boundary length

PARMETIS library

inter-processes communications
MPI (graph topology) + « ghost cells »



Work in progress

Free surface potential equations
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