# Numerical simulation of tsunamis

Frédéric Dias, Denys Dutykh, Raphaël Poncet

CMLA, ENS Cachan & CEA-DAM

GDT ENS Cachan Bretagne, 3 décembre 2008

Modeling

### Outline

# Modeling

Equations and numerical approximation

Presentation of Volna

Numerical results

Work in progress

Tsunamis : gravity waves created by earthquakes or submarine landslides  $\rightarrow$  free-surface flow

Full fluid equations for free surface flows :

- two-phase Navier-Stokes equations (air/water)
- free surface potential Euler equations
- limited to individual waves propagating over a few meters
- computationally very intensive (3-dimensional,...)
- $\rightarrow$  necessity of finding simplified equations

Modeling

#### Long wave approximation I

Characteristic lengths (during propagation) :

- wavelength  $\lambda$  : 100 km
- water depth  $h_0$  : 4 km
- wave amplitude a : 0.5 m

Dimensionless parameters :

N.B. linear dispersion relation ( constant depth h )

$$\omega(k) = rac{2\pi}{\lambda(k)} = \sqrt{g|ec{k}| anh(|ec{k}|h)}.$$

### Long wave approximation II

Asymptotic regimes for free surface potential equations :

- retain only terms in  $O(\varepsilon + \mu^2)$ 
  - $\rightarrow$  Boussinesq equations
- retain only terms in  $O(\varepsilon)$ 
  - → nonlinear shallow-water equations
- retain only terms in O(1)
  - $\rightarrow$  linear shallow water equations

### Outline

# Modeling

### Equations and numerical approximation

Presentation of Volna

Numerical results

Work in progress

#### Nonlinear shallow water equations

- integrated along the vertical coordinate
   → 2-dimensional model
- the free surface is assumed to be a function  $z = \eta(x, y, t)$
- dispersive effects neglected
- hyperbolic system of conservation laws

#### Nonlinear shallow water equations

 $\eta(x, y, t)$  : free surface amplitude, h(x, y, t) : bathymetry,  $H = h + \eta$ .

Mass conservation :

 $\partial_t H + \nabla \cdot \left( H \vec{u} \right) = 0,$ 

#### Momentum conservation :

$$\partial_t(H\vec{u}) + \nabla \cdot (H\vec{u} \otimes \vec{u}) + \nabla (g\frac{H^2}{2}) = gH\nabla h + S(H,\vec{u}),$$

where S is a source term modeling for instance :

- Coriolis force :  $S(H, \vec{u}) = \Omega \times \vec{u}$
- bottom friction, using semi-empirical engineering formulas :
  - Chézy law  $S(H, \vec{u}) = -C_f g \vec{u} |\vec{u}|$
  - Manning-Strickler law, Darcy-Weisbach law ....

#### Systems of conservation laws

Rewrite equations as :

$$\partial_t w + \nabla \cdot (\mathcal{F}(w)) = \mathcal{S}(w),$$

where

- w : vector of conservative variables,  $w = (H, H\vec{u})$
- $\mathcal{F}$ : advection flux,  $\mathcal{F}(H, \vec{u}) = (H\vec{u}, H\vec{u} \otimes \vec{u} + g\frac{H^2}{2} \mathrm{Id})$
- S : source terms,  $S(H, \vec{u}) = (0, gH\nabla h + S(H, \vec{u}))$

#### Finite volumes framework

Integrate on a control volume :

$$\frac{d}{dt}\int_{\Omega}w\,d\Omega-\int_{\partial K}\mathcal{F}(w)\cdot\vec{n}\,d\sigma=\int_{K}\mathcal{S}(w)\,d\Omega.$$

Introduce cell averages (cell centered finite volumes) :

$$w_{\mathcal{K}}(t) = \int_{\Omega} w(t,.) \, d\Omega.$$

**Question** : express the normal fluxes  $(\mathcal{F} \cdot \vec{n})|_{\partial K}$  in terms of  $\{w_K\}_{K \in \Omega}$  $\rightarrow$  numerical fluxes

#### Finite volume framework – numerical fluxes

FVCF : finite volumes with characteristic fluxes ([Ghidaglia, Kumbaro, Le Coq '96]) Flux across the triangle edge shared by triangles K and L is :

$$\Phi(w_{\mathcal{K}},w_{L},\vec{n}_{\mathcal{K}L})=\frac{\mathcal{F}_{n}(w_{\mathcal{K}})+\mathcal{F}_{n}(w_{L})}{2}-U(\mu,\vec{n}_{\mathcal{K}L})\frac{\mathcal{F}_{n}(w_{\mathcal{K}})-\mathcal{F}_{n}(w_{L})}{2}$$

where  $\mu$  is a mean state :

$$\mu = \frac{vol(K)w_K + vol(L)w_L}{vol(K) + vol(L)}$$

and U is the sign matrix :

$$U(w, \vec{n}) = sign(\mathbb{A}_n) = Rsign(\Lambda)R^{-1}, \qquad \mathbb{A}_n = \frac{\partial \mathcal{F} \cdot n(w)}{\partial w}$$

Remark : in our case, U can be computed analytically

#### Finite volume framework – numerical fluxes

Other numerical flux implemented : HLL (Harten, Lax, Van Leer '83)

# Finite volume framework – 2<sup>nd</sup> order spatial discretisation

# MUSCL type 2<sup>nd</sup> order discretisation

Search w in the class of affine-by-cell functions :

$$w_{\mathcal{K}}(\vec{x},t) = w_{\mathcal{K}} + (\nabla w)|_{\mathcal{K}}(\vec{x}-\vec{x_0}),$$

where  $x_0$  is the barycenter of K

Gradient  $(\nabla w)_{\mathcal{K}}$  is reconstructed from  $\{w_{\mathcal{K}}\}_{\mathcal{K}\in\Omega}$ • least square method

Need a slope limiter (finite volumes for NL hyperbolic systems)

Barth-Jespersen limiter

### Numerical approximation – additional difficulties

2 additional difficulties (crucial for tsunami applications) :

- Runup and rundown : at H = 0, the system loses its hyperbolicity
- source term gH∇h : numerical instabilities arise for steep bathymetry gradients if (some) static solutions are not discretely preserved
   → « well-balanced » schemes

### Numerical approximation – additional difficulties

#### runup/rundown treatment :

Specific Riemann problem for dry/wet interface :



#### source term treatment

 « well-balanced » scheme : modified H variable in fluxes computation (scheme stays conservative) ([Audusse '05])

### **Time integration**

Strong stability preserving Runge-Kutta schemes SSP-RK [Gottlieb & Shu '98] :

- explicit in time
- wide stability region
- nonlinearly stable and optimal for CFL

More precisely, we use SSP–RK4 (3) ([Spiteri & Ruuth '02]),  $3^{rd}$  4-stage scheme with CFL = 2 :

$$u^{1} = u^{n} + \frac{1}{2}dtL(u^{n}),$$
  

$$u^{2} = u^{1} + \frac{1}{2}dtL(u^{1}),$$
  

$$u^{3} = \frac{2}{3}u^{n} + \frac{1}{3}u^{2} + \frac{1}{6}dtL(u^{n}),$$
  

$$u^{n+1} = u^{3} + \frac{1}{2}dtL(u^{3}).$$

Presentation of Volna

### Outline

### Modeling

### Equations and numerical approximation

#### Presentation of Volna

Numerical results

Work in progress

# Introduction

VOLNA : research code for the numerical simulation of water waves, used for prototyping operational codes

### Domains of applications

- tsunami simulations (seismic, landslides)
- storm waves simulations (surges)

### Needs

- $\blacksquare$  computational domains of  $\simeq$  10 to 100 wavelengths
- precise, efficient
- robust
- tradeoff between precision/efficiency
- handle realistic scenarios

# VOLNA

### VOLNA code



#### Features

- solves the nonlinear shallow water equations
- order 2 in space, 3 in time
- semi-automated preprocessing for data acquisition
- arbitrary varying in time bathymetry & boundary conditions
- unstructured meshes :
  - complex geometries
  - static adaptivity (refinement near shorelines, steep bathy. gradients,...)
    - $\rightarrow$  precision where needed
    - $\rightarrow$  can partially alleviate numerical difficulties

### Preprocessing

Relies on open source libraries, and the Python scripting language

- data acquisition
  - IO : arbitrary geospatial data handling  $\rightarrow$  GDAL/OGR
  - geographic to local coordinates projection → Proj.4
  - scattered data interpolation : natural neighbor interpolation
    - $\rightarrow$  Pavel Sakov, http://www.marine.csiro.au/~sak007/
- complex geometries :
  - boolean operations on plane surfaces → GEOS
  - meshing → Gmsh

### Outline

Modeling

Equations and numerical approximation

Presentation of Volna

Numerical results

Work in progress

- validation against 4 test cases, 2 analytical, 2 experimental
- statically refined meshes (in shallow waters) are systematically used to reduce computational time.



FIG.: mesh for Catalina 2 test case

no bottom friction (e.g. no free parameter)

#### Catalina 1 – analytical

- runup on a plane sloping beach
- comparison with analytical solution
  - [Carrier & Greenspan '58], [Carrier, Wu & Yeh '03]
- steep test case (strong bathymetry gradient) :



 $F{\scriptstyle \rm IG.:}$  initial data

#### Catalina 1 – analytical

- runup on a plane sloping beach
- comparison with analytical solution
  - [Carrier & Greenspan '58], [Carrier, Wu & Yeh '03]
- steep test case (strong bathymetry gradient) :



#### $F{\scriptstyle IG.:}$ initial data + bathymetry

### Catalina 1 – analytical





- globally good agreement
- discrepancies near the shoreline (VOLNA results comparable to other shallow water codes); may be due to
  - numerics
  - the fact that the analytical solution is not exact



- 205 m long wave tank experiment
- reproduces at 1/400th scale the Okushiri tsunami (Japan, 1993)
- Complex 3D bathymetry





















#### Catalina 3 – analytical landslide



### Catalina 3 – analytical landslide



### Catalina 3 - analytical landslide



#### Catalina 3 – analytical landslide



#### Catalina 4 – wave tank landslide

- comparison with wave tank experiments ([Synolakis & Raichlen '03])
- difficult test case for NSWE equations





#### Catalina 4 – wave tank landslide

### Preliminary results

- reasonably good agreement except directly above the wedge (not shown)
- wave breaking, resolution too coarse, limits of NSWE?



#### Catalina 4 – wave tank landslide

### Preliminary results

- reasonably good agreement except directly above the wedge (not shown)
- wave breaking, resolution too coarse, limits of NSWE?



### Conclusion

 NSWE solved by FVM method with specific treatment of runup and source terms realizes a good trade-off between accuracy, robustness and efficiency for tsunami simulations

static mesh refinement helps to further alleviate numerical incertainties and save computational time. Work in progress

### Outline

Modeling

Equations and numerical approximation

Presentation of Volna

Numerical results

Work in progress

Work in progress

#### **Dispersive effects**

inclusion of dispersive effects (Boussinesq equations) in a finite volumes framework

### **Tsunamis simulations**

Java tsunami (2006)

- Initial data : Okada solution (elastodynamics)
- bathymetry : GEBCO dataset



FIG.: Free surface (km) at t = 0, 15 and 30 minutes

underwater landslide tsunami scenario in the Saint-Laurent river

### Parallelization

- domain decomposition : split the mesh in sub meshes of equal size while minimizing boundary length
  - → PARMETIS library





inter-processes communications

 $\rightarrow$  MPI (graph topology) + « ghost cells »

Work in progress

### Free surface potential equations