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Abstract. Lagrangian interpolation is a classical way to approximate general

functions by finite sums of well chosen, pre-defined, linearly independent inter-

polating functions; it is much simpler to implement than determining the best
fits with respect to some Banach (or even Hilbert) norms. In addition, only

partial knowledge is required (here values on some set of points). The problem

of defining the best sample of points is nevertheless rather complex and is in
general open. In this paper we propose a way to derive such sets of points.

We do not claim that the points resulting from the construction explained here

are optimal in any sense. Nevertheless, the resulting interpolation method is
proven to work under certain hypothesis, the process is very general and simple

to implement, and compared to situations where the best behavior is known,
it is relatively competitive.

1. Introduction. The extension of the reduced basis technique [8, 13, 15, 22, 24,
14] to nonlinear partial differential equations (PDEs) has led us to introduce an
“empirical Lagrangian interpolation” method on a finite dimensional vectorial space
spanned by a series of given functions that can actually be of any type (see [1,
7]). We refer to [19] for a general presentation of the reduced basis method. The
efficiency of this approach in the reduced basis context, as outlined in [1, 7], and the
simplicity of its implementation have stimulated us to generalize the approach and
to deepen its analysis. The problem of Lagrangian interpolation is a classical one
and, in most caes, it is associated with polynomial type approximations (algebraic
polynomials, Fourier series, spherical harmonics, spline, rational functions, etc.).
Given a finite dimensional space XM in a Banach space X of continuous functions
defined over a domain Ω part of IR, IRd or C| d, and a set of M points in Ω, {xi ∈
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Ω, i = 1, . . . ,M}, the interpolant of a function f in X is the (preferably unique)
element fM in XM such that fM (xi) = f(xi), i = 1, . . . ,M .

Among the classical questions raised by the interpolation process are

1. given a set of points, does the interpolant at these points exist;
2. is this interpolant unique;
3. how does the interpolation process compare with other approximations (in

particular orthogonal projections);
4. is there an optimal selection for the interpolation points; and
5. is there a constructive optimal selection for the interpolation points.

The theory for polynomial interpolation is well documented; although it is quite
complete in one dimension and partially over domains of simple shapes in higher
dimensions (e.g. those obtained through tensor-product operations), the answers
to these questions are rather complex and recent relative to the classical character
of the questions.

Our interest in this paper is motivated by the particular framework where we are
given a set U ⊂ X that is supposed to be approximable by finite expansions in terms
of given generating functions. In order to make this statement accurate, we can for
instance consider that U has small n-width in the sense given by Kolmogorov [11, 20].
Let us remind that the Kolmogorov n-width of U in X is defined by

dn(U , X) = inf
Xn

sup
x∈U

inf
y∈Xn

‖x− y‖X (1)

where Xn is some (unknown) n-dimensional subspace of X. The n-width of U thus
measures the extent to which U may be approximated by some finite dimensional
space of dimension n.

Why should the n-width of U be small? Actually, there are many reasons why
this n-width may go rapidly to zero as n goes to infinity, if U is a set of functions
defined over a domain Ω,

• we can refer to regularity, or even to analyticity, of these functions with respect
to the variable of Ω. Indeed, an upper bound for the asymptotic rate at which
it converges to zero is provided by the example in [11] — dn(U ;L2) = O(n−r)
when U = B̃

(r)
2 is the unit ball in the Sobolev space of all 2π-periodic real

valued, (r − 1)-times differentiable functions whose first (r − 1) derivative is
absolutely continuous and whose rth derivative belongs to L2. Furthermore,
exponential small n-width is achieved when analyticity exists in the parameter
dependency. Polynomial approximations can be advocated in these cases ;

• another possibility that we actually encounter in the reduced basis framework
is given by U = {u(µ, ·), µ ∈ D}, where D is a given (infinite) set of parameters
(either in IRp or even in some functional space of continuous functions). Then,
the regularity of u in µ can also be a reason for having a small n-width. An
example is provided e.g. by U = {u(x,µ) ≡ 1√

(x1−µ1)2+(x2−µ2)2
,µ ∈ Ξµ},

where x = (x1, x2), µ = (µ1, µ2) and Ξµ is a set of parameters.

Assuming thatX is provided with a scalar product, then the best fit of an element
u ∈ U in some finite dimensional space XM that realizes almost the infimum in (1)
is given by the orthogonal projection onto XM . In many cases the evaluation of
this projection may be costly and the knowledge of u over the entire domain Ω is
required. Thus, assuming that X ⊂ C0(Ω), so that the elements in U are continuous,
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the interpolation is a tool that is often referred to as a inexpensive surrogate to the
evaluation of the orthogonal projection.

In one space dimension, the polynomial interpolation is rather well understood:
the only condition for a Lagrangian interpolation operator to exist is that the points
are distinct. The location of almost optimal points is provided by the Chebyshev
Gauss nodes. In dimension greater than one, there exist more intricate conditions
in order for a polynomial interpolation to be well defined, and not any set of points
would provide a positive answer to questions (1) and (2). For general functions
— as the one we have in mind for reduced basis approximations (the functions
are solutions of parameter-dependent PDEs or functional in [4, 7]) — the general
conditions for which the interpolation points give a unique interpolant are an open
problem. Our proposed method provides a constructive approach to this general
problem and partially answers the 5 questions raised above. Actually, our algorithm
provides also an answer to an additional question: what are the generating functions
we should use for interpolation?

In section 2, we explain the construction of these interpolating functions and the
associated points that we have named “magic points”. We recall the notion of the
Lebesgue constant and state some results related to the analysis of this approxima-
tion. In section 3, we compare the quality of this new general approach to some
standard results in classical algebraic polynomial approximations of some typical
geometries; we further demonstrate the versatility of the method with a nonstan-
dard geometry. In section 4, we examine non-polynomial spaces and spaces spanned
by parameter-dependent functions. In Section 5, we propose two applications of this
procedure to approximate solutions of some PDEs, including a brief description of
its application within reduced-basis methods. Lastly, we demonstrate how the a
posteriori error estimator can be exploited in the construction of the approximation
space.

We wish to stress that the applicability of the procedure is not limited to ex-
amples we have included in this paper; on the contrary, the procedure may prove
advantageous in a variety of applications, for example image or data compression
involving domains of irregular profile, fast rendering and visualization in animation,
the development of computer simulation surrogates or experimental response surface
for design and optimization, and the determination of a good numerical integration
scheme for smooth functions on irregular domains. Lastly, for another approach to
approximating parameterized fields, in particular an optimization–based approach
well-suited to noisy data or constrained systems, see [16].

2. Empirical interpolation. We begin by describing the construction of the em-
pirical interpolation method — a generalization of the one sketched in [1] and pre-
sented in greater details in [7]. The present construction allows us to define simul-
taneously the set of generating functions and the associated interpolation points. It
is based on a greedy selection procedure as outlined in [18, 22, 23]. In what follows,
we assume that the functions in U are at least continuous over the domain Ω. With
M being some given large number, we assume that the dimension of the vectorial
space spanned by U is of dimension ≥M.
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To begin, we choose our first generating function u1 as being defined by

u1 = arg max
u∈U

‖u( · )‖L∞(Ω)
1.

We define the first interpolation point as being x1 = arg maxx∈Ω |u1(x)| and then
define the first normalized function associated with u1: q1 = u1(·)/u1(x1) and finally
set B1

11 = 1.
The available interpolation system allows to define an interpolation process where,

any function u is approximated by I1[u] = u(x1)q1 that is the only function,
collinear with u1 that coincides with u at x1.

The second interpolating function is

u2 = arg max
u∈U

‖u( · )− I1[u]( · )‖L∞(Ω)

and the second interpolation point is

x2 = arg max
x∈Ω

|u2(x)− I1[u1](x)|.

The second normalized function is

q2 =
u2(·)− I1[u2]

u2(x2)− I1[u2](x2)
.

And we proceed by induction to obtain the nested sets of interpolation points TM =
{x1, . . . , xM}, 1 ≤ M ≤ Mmax and the nested sets of normalized basis functions
QM = {q1, . . . , qM}, where Mmax ≤ M is some given upper bound fixed a priori.
We first prove an intermediate result:

Lemma 2.1. Assume that the space XM = span {q1, . . . , qM} is of dimension M
and that the M × M matrix BM with entries qj(xi) is invertible, then we have
IM [v] = v for any v ∈ XM ; here IM [v] is the interpolant of v as given below

IM [v] =
M∑

j=1

βM,jqj , (2)

where the βM,j is the solution of
M∑

j=1

qj(xi)βM,j = v(xi), i = 1, . . . ,M . (3)

In other words, the interpolation is exact for all v in XM .

Proof. For v ∈ XM , which can be expressed as v(x) =
∑M

j=1 γM,jqj(x), we consider
x = xi, 1 ≤ i ≤M, to arrive at v(xi) =

∑M
j=1 qj(xi)γM,j , 1 ≤ i ≤M . It thus follows

from the invertibility of BM that βM = γM ; and hence IM [v] = v.

• We then define uM+1 as being the element in U that is the worse approximated
by the current interpolation process

uM+1 = arg max
u∈U

‖u− IM [u]‖L∞(Ω) , (4)

and declare the next interpolation point to be

xM+1 = arg max
x∈Ω

|uM+1(x)− IM [uM+1](x)| . (5)

1In case U is e.g. invariant by multiplication by a scalar, the max in the above formula is equal

to +∞ of course we should then replace it by e.g. u1 = arg maxu∈U
‖u( · )‖L∞(Ω)

‖u( · )‖X
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• We finally set

qM+1 =
uM+1 − IM [uM+1]

uM+1(xM+1)− IM [uM+1](xM+1)
.

We now demonstrate that this construction of the interpolation points {xi, 1 ≤
i ≤M} and the basis functions {qi, 1 ≤ i ≤M} is well-defined for any M , meaning
that the set {qi, 1 ≤ i ≤ M} is linearly independent and, in particular, the matrix
BM is invertible.

Theorem 2.2. Assume that Mmax is chosen such that Mmax <M; then, for any
M ≤ Mmax, the space XM = span{q1, . . . , qM} is of dimension M and coincides
with span {u1, . . . , uM}. In addition, the matrix BM is lower triangular with unity
diagonal (hence it is invertible).

Proof. The fact that span {q1, . . . , qM} = span {u1, . . . , uM} follows from the trian-
gular construction of the normalized q’s with respect to the u’s. We shall proceed
by induction. Clearly, X1 = span {q1} is of dimension 1 and the matrix B1 = 1 is
invertible. Next we assume that XM−1 = span{q1, . . . , qM−1} is of dimension M−1
and the matrix BM−1 is invertible; we must then prove (i) XM = span{q1, . . . , qM}
is of dimension M and (ii) the matrix BM is invertible. To prove (i), we note
from our “arg max” construction that ‖uM − IM−1[uM ]‖L∞(Ω) ≥ ε0, where ε0 —
the Kolmogorov Mmax-width of U — is strictly positive since Mmax < M. Hence
‖uM − IM−1[uM ]‖L∞(Ω) > 0, so if dim(XM ) 6= M , we have uM ∈ XM−1 and
thus ‖uM − IM−1[uM ]‖L∞(Ω) = 0 by Lemma 1, which provides the contradic-
tion and concludes the proof that dim(XM ) = M . To prove (ii), we just note
from the construction procedure that BM

i j = rj(xi)/rj(xj) = 0 for i < j; that
BM

i j = rj(xi)/rj(xj) = 1 for i = j; and that
∣∣BM

i j

∣∣ = |rj(xi)/rj(xj)| ≤ 1 for i > j

since xj = arg maxx∈Ω |rj(x)|, 1 ≤ j ≤ M . Hence, BM is lower triangular with
unity diagonal.

The Lagrangian functions are then introduced to facilitate the construction of
the interpolation operator IM in XM over the set of points TM = {xi, 1 ≤ i ≤M}:
for any given M , IM [u( · )] =

∑M
i=1 u(xi)hM

i ( · ), where hM
i ( · ) =

∑M
j=1 qj( · )[BM ]−1

ji

(by definition indeed that hM
i (xj) = δij).

The error analysis of the interpolation procedure classically involves the Lebesgue
constant ΛM = supx∈Ω

∑M
i=1 |hM

i (x)|. Following the same lines as in [7] we can
prove that an upper-bound for the Lebesgue constant is 2M −1 (in practice it turns
out to be a very pessimistic upper bound, see however appendix A where we prove
that — for a specially cooked up example — this upper bound can be achieved ).
We recall also that the Lebesgue constant enters into the bound for the interpolation
error as follows

Lemma 2.3. For any u ∈ X, the interpolation error satisfies

‖u− IM [u]‖L∞(Ω) ≤ (1 + ΛM ) inf
vM∈XM

‖u− vM‖L∞(Ω). (6)

The last term in the right hand side of the above inequality is known as the best
fit of u by elements in XM in the L∞-norm.

The following result allow us to make much more precise the previous lemma.
Indeed, it allows us to state that even though we do not know finite dimensional
spaces — candidates for achieving the minimal distance in the n-width — the greedy
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process for the magic points allows us to construct spaces XM that provide an upper
bound for the interpolation error :

Theorem 2.4. Assume that U ⊂ X ⊂ L∞(Ω), and that there exists a (possibly
unknown) sequence of finite dimensional spaces

Z1 ⊂ Z2 ⊂ · · · ⊂ ZM ⊂ · · · ⊂ span U , dim ZM = M (7)

such that there exists c > 0 and α > log(4) with

∀u ∈ U , inf
vM∈ZM

‖u− vM‖X ≤ ce−αM (8)

then,
‖u− IM [u]‖L∞(Ω) ≤ ce−(α−log(4))M . (9)

Proof. Refer to Appendix B.

Remark 1. This theorem states that, under the reasonable condition of existence
of a reduced space allowing for an exponential approximation (actually even faster
convergence is observed in most cases, as explained in [3]), the empirical interpola-
tion procedure: (i) proposes a discrete space (spanned by the chosen ui) where the
best fit is good, (ii) provides a set of interpolation points that leads to a convergent
interpolant.

Remark 2. If for some reasons, the sequence of spaces Zi were given, or similarly
the sequence of linearly independent functions ui ∈ U , i ∈ IN, then the procedure
of finding the interpolation points through the process ∀i, 1 ≤ i ≤M − 1, u(xi) =∑M−1

j=1 αi,juj(xi) and set xM = arg maxx∈Ω |uM (x) −
∑M−1

j=1 αi,juj(x)| is also well
defined. This is the approach presented in [1, 7]). However, even in this case, the
Greedy can improve the Lebesgue constant through reordering, and is furthermore
important in the development of an a posteriori error estimator (see Section 6).
The rationale for the greedy approach is that it allows us to get a better sense of
the interpolation properties since ∀u,

‖u( · )− IM [u(.)]‖L∞(Ω) ≤ ‖uM+1( · )− IM [uM+1( · )]‖L∞(Ω) (10)

and this last quantity is one of the outputs of the construction process.

Remark 3. In the actual implementation of the method, since the cardinal of U is
infinite, we start with a large enough sample subset Wu in U of cardinal M much
larger than the dimension of the discrete spaces and number of interpolation nodes
we plan to use. For example, if U = {u(µ, ·), µ ∈ D}, we choose Wu = {u(µ), µ ∈
Ξµ ⊂ D}; Ξµ consists of M parameter sample points µ and we assume this sample
subset is representative of the entire set U in the sense that supx∈U infy∈XM ‖x −
y‖X is much smaller than the approximation we envision through the interpolation
process. Here XM is the vectorial space spanned by Wu and we assume that the
dimension of XM is M.

We will now subject the empirical interpolation procedure described above to
some tests. The abstract formulation of the problems we are going to solve can
be stated as follows: given a space U ⊂ X ⊂ L∞(Ω), we will construct a space
XM ⊂ X and an interpolant IM ∈ XM such that for a given function u ∈ U ,
‖u− IM [u]‖L∞(Ω) → 0 rapidly as M →∞. We can classify the problems into two
distinct categories:
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1. U ≡ X ≡ Cm and XM spans the same space as a preselected universal
approximation space; here we are interested in constructing a well-conditioned
set of basis functions in XM and the corresponding magic points;

2. U is a set of functions on the parametric manifold, XM is a — a priori not
known — finite dimensional space in X is some well-defined function spaces
such as Sobolev spaces.

3. Polynomial interpolation. We consider the first category of problems. In
particular, XM consists of polynomial functions. The purpose of this section is to
(i) test the empirical interpolation process in well-documented situations in order
to first measure where magic points stand with respect to some optimal results, and
(ii) understand if the order at which the basis functions are processed affects the
Lebesgue constant.

3.1. One dimension. We consider a domain Ω1d ≡ [−1, 1] and constructXM (Ω1d)
and the associated magic points based on:

(a) monomials, WP
n (Ω1d) = {xi, x ∈ Ω1d, 0 ≤ i ≤ n}, 0 ≤ n ≤ nmax; and

(b) Legendre polynomials, WL
n (Ω1d) = {Li(x), x ∈ Ω1d, 0 ≤ i ≤ n}, 0 ≤ n ≤ nmax

where Li is the Legendre polynomial of order i.

Note that XM = span {WP
n (Ω1d)} = span {WL

n (Ω1d)} with M = n + 1. To ex-
amine the potential effects of ordering of the a priori given basis elements on the
resulting approximation, we apply the empirical interpolation procedure based on
two variations: (i) the basis functions are processed in increasing polynomial order;
and (ii) the order by which the basis functions are processed is determined by the
greedy algorithm. We discretize the space into 2000 intervals and solve the system
up to nmax = 30. As expected and shown in Figure 1, the choice of the initial
approximation spaces does not affect the magnitude of the Lebesgue constant when
the basis functions are processed in increasing polynomial orders. Greedy algorithm
can result in slightly better Lebesgue constant for some n, although the result is
not uniform. In both cases, the Lebesgue constant obtained through our empirical
interpolation procedure is close to the (nearly) optimal values (behavior in O(log(n)
obtained based on the Chebyshev points) as shown in Figure 1. Lastly, Figure 1 also
shows that the distribution of the empirical interpolation points bears significant
resemblance to the Chebyshev points. For comparison, we have also plotted the
behavior for equidistant interpolation points. Finally, it should be noted that the
Lebesgue constant for the magic point construction is not monotonic as a function
of the number of points.

3.2. Two dimension.

3.2.1. Triangle. We consider a triangle Ωtri ≡ {(x, y) : x ≥ −1, y ≥ −1, x+ y ≤ 0}.
We define the initial sample set as WP

n (Ωtri) ≡ {xiyj , (x, y) ∈ Ωtri, i + j ≤ n},
0 ≤ n ≤ nmax. Then XM (Ωtri) = span {WP

n (Ωtri)} and M = 1
2 (n + 1)(n + 2).

Since the greedy algorithm leads to smaller Lebesgue constants in most cases, we
will apply the greedy algorithm to WP

n (Ωtri) (and to all subsequent examples) when
determining the magic points. We further discretize the domain such that the small-
est division in each direction is 0.01. Figure 2(a) shows the growth of the Lebesgue
constant with n up to nmax = 12. Compared to the optimal points obtained in [10]
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Figure 2. Results for the triangle: (a) variation of Lebesgue con-
stant, ΛM with n where M = 1

2 (n+1)(n+2), and (b) distribution
of magic points compared to [10].

and [5] 2, the Lebesgue constants for our empirical interpolation points are not too
far off, as shown in Table 1. In addition, the magic points are obtained through a
simple procedure, in the absence of any sophisticated optimization process. Lastly,
we observe that the distribution of the empirical interpolation points again bears
strong resemblance to those reported in [10], as shown in Figure 2(b) for n = 12.

3.2.2. Hexagon. We define Ωhex as a regular hexagon inscribed in a circle of radius
1 and an initial sample set given by WP

n (Ωhex) ≡ {xiyj , (x, y) ∈ Ωhex, i + j ≤ n},
0 ≤ n ≤ nmax. Then, XM (Ωhex) = span {WP

n (Ωhex)} with M = 1
2 (n + 1)(n + 2).

The growth of the Lebesgue constants with n, and the distribution of the magic
points (for the case with increasing n) are shown in Figure 3. We have not found any
analysis for the best position of the interpolation points over such a simple domain;

2Dating respectively from 2005 and 1995, hence proving that the interest in the matter is still

active.
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n Magic Points [10] [5]
6 9.16 3.67 3.79
9 17.70 5.58 5.92
12 24.86 7.12 10.08

Table 1. Comparing the Lebesgue constants for magic points,
with that from literature, for Ωtri.

-10 02 14
-1

6

0

8

1

10 12
0

5

10

15

20

25

30

35

n x

Λ
M y

Figure 3. Results for the hexagon: (a) variation of Lebesgue con-
stant, ΛM with n where M = 1

2 (n+1)(n+2), and (b) distribution
of magic points.

the good behavior of the Lebesgue constant associated with the magic points is one
of the interests of the method.

3.2.3. Lunar croissant. We consider now a non-convex domain of “lunar crois-
sant” shape, Ωcro ≡ Ω1

cir\Ω2
cir, where Ω1

cir and Ω2
cir are two unit circles centered at

(0,−0.5) and (0, 0.5), respectively. We define an initial sample set as WP
n (Ωcro) ≡

{xiyj , (x, y) ∈ Ωcro, i + j ≤ n}, 0 ≤ n ≤ nmax, and XM (Ωtri) = span {WP
n (Ωtri)}

with M = (n+1)2. We show in Figure 4 the Lebesgue constant Λn as a function of
n and the distribution of the magic points for n = 12. We observe that the growth
of the Lebesgue constant with n is quite similar to those in the triangle and hexagon
cases. We know of neither exact nor computed values for the optimal (or even near
optimal) point set over the domain Ωcro.

We observe (empirically) in general that the empirical interpolation procedure
automatically yields points on the boundary of the domain, which is quite useful in
many (multi–domain) contexts.

3.3. Three dimension. We define Ωtet as a three-dimensional simplex in IR3 with
vertices at (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0) and an initial sample set given
by WP

n (Ωtet) ≡ {xiyjzk, (x, y, z) ∈ Ωtet, i + j + k ≤ n}, 0 ≤ n ≤ nmax. Then,
XM (Ωtet) = span {WP

n (Ωtet)} with M = 1
6 (n + 1)(n + 2)(n + 3). The application

of the empirical interpolation procedure yields Lebesgue constants shown in Table
2 for n ≤ nmax = 9. It is compared to results from [12] and [6] 3 obtained through
optimization procedures. Again, in comparison to the best known approximation,
the empirical interpolation procedure performs reasonably well.

3dating respectively from 2006 and 1996.
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Figure 4. Results for the “lunar croissant” domain: (a) variation
of the Lebesgue constant Λn with n, and (b) distribution of magic
points for n = 12.

n Magic Points [12] [6]
2 2.0 2.0 2.0
3 3.80 2.93 2.93
4 8.70 4.07 4.11
5 9.77 5.38 5.62
6 15.27 7.53 7.36
7 31.04 10.17 9.37
8 34.31 14.63 12.31
9 62.99 20.46 15.69

Table 2. Comparing the Lebesgue constants for magic points with
that from literature, for Ωtet.

4. Different types of approximations.

4.1. Spherical harmonics on the surface of a sphere. We consider the surface
of the sphere Ωsph ≡ {|x| = 1,x ∈ S2 ⊂ IR3} and define an initial sample set given by
WS

n (Ωsph) ≡ {Ylm(x),x ∈ Ωsph, 0 ≤ l ≤ n, |m| ≤ l}, 0 ≤ n ≤ nmax, where {Ylm(x)}
is an orthonormal set of spherical harmonics. Then, XM (Ωsph) = span {WS

n (Ωsph)}
with M = (n+ 1)2. The application of the empirical interpolation procedure yields
a Lebesgue constant that grows as shown in Figure 5 for n ≤ nmax = 20; this
is compared to the improved rate of n + 1 obtained by Sloan and Womersley in
[25] through an optimization procedure. The deviation here is sensibly larger with
respect to the best fit, though still acceptable if we compare it to the other earlier
“optimal” results quoted before [25] where an O(n2) was documented.

Remark 4. An important remark is now in order. The magic points in TM are
defined recursively, which is not at all the case for other approaches, in particular
the points proposed in [25]. Starting from a maximal space Xmax, the associated
approximation spaces XM are hierarchical, i.e. X1 ⊂ X2 ⊂ . . . ⊂ XM ⊂ Xmax. In
order to illustrate this distinction, we first look at the problem of choosing M/2
points from the M points proposed in [25] for a given n that gives the minimum
Lebesgue constant when approximating using the first M/2 basis functions in WS

n .
Clearly, as the number of possible combinations increases exponentially fast as n
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Figure 5. Variation of the Lebesgue constant, ΛM with n where
M = (n+ 1)2, for Ωsph.

increases, considerable effort is required to find a good combination. On the con-
trary, with empirical interpolation procedure, determining a good combination of
M/2 points out of the M number of magic points is simple — we simply choose the
first M/2 points.

To demonstrate how good these magic points are, we randomly choose 1000
combinations of M/2 points from the M Sloan points and search through these sets
of points for the minimum Lebesgue constant. We compare the resulting Lebesgue
constants with that obtained using the first M/2 magic points. For n = 4, Sloan
points gives 6.44 vs 4.93 for magic points. For n = 10, Sloan points gives 138.56
vs 20.25 for magic points. Here the Lebesgue constants for the magic points are
obtained without using the greedy algorithm, i.e. the basis functions are processed
in the order given in WS

n .

Remark 5. Another remark is the versatility of this approach with respect to the
domain. We have considered the domain on the sphere delimited by reducing the
angle to [π/3, 5π/6] × [2π/3, 4π/3], so it is more or less a curved surface. Over a
very fine grid of 600× 600 the best Lebesgue constant that we could get for n = 10
is 36 as shown in figure 6. There is also significant resemblance between the magic
points and the tensorized Chebyshev points, as shown in Figure 6. Here again no
reference could be found for interpolating with spherical harmonics over a portion
of a sphere.

4.2. Parameter-dependent functions. We now examine the second category of
problems outlined in Section 2. Here, we are interested in approximating parameter-
dependent transcendental functions u(x, µ). In particular, we have in mind func-
tions that are complicated to evaluate but have a smooth dependency on some
parameters such as u(x, µ) = eg(x,µ), convoluted functions, smooth empirical data
varying smoothly in time or space etc. To illustrate the potential computational
savings resulting from the use of empirical interpolation procedure, we examine the
following convoluted function

u(x, µ) =
∫

Ω

l(x′, µ)g(x,x′)dx′. (11)

For every new µ, a full evaluation of u will require, for each x point the computation
of an integral (in x′) which may be done by numerical integration based on a large
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enough set of points (say N points). Assuming, for the sake of simplicity, that we
want to compute u at all of these N points, this will require O(N 2) operations.
However, if for a given Ξµ, we construct an approximation space of dimension M
and the associated magic points for u( · , µ), we will only required 2(MN ) + M2

operations — we only evaluate the integral at M magic points (which gives MN
operations), solve for the coefficients by inverting a M ×M triangular matrix, then
require another MN to get an approximation of u at all N points 4.

As an example, we consider a domain Ωrec = [−0.5, 0.5]× [−0.5, 0.5], µ ∈ [1, 10],
x ≡ (x, y), l(x, µ) = sin(2πµ|x|), and g(x) = 50

π exp(−50|x|2). We construct our
approximation based on the sample set Wu(Ωrec) = {u( · , µ), µ ∈ Ξµ ⊂ [1, 10]}.
Table 3 shows that the error ‖u( · , µ)−IM [u( · , µ)]‖L∞(Ωrec) decreases exponentially
and the Lebesgue constants are generally small for all M . Thus, the approxima-
tion leads to fast evaluation of u with minimal loss of accuracy. This may have
applications in areas such as animation where µ represent temporal variables, the
regeneration of 3D tomographic data sets where µ represent spatial variables, or
the reduced basis methods, as will be illustrated in the next section.

5. Two applications for the approximation of the solutions to some PDEs.

5.1. Reduced basis method. This is the framework actually for which the magic
points have been initially conceived. We consider a weak formulation of µ-
parametrized nonlinear elliptic PDEs of the form

µa0(u(µ), v) +
∫

Ω

g(u(µ))v = f(v), ∀v ∈ H1
0 (Ω). (12)

A particular instantiation considered here is as follows

a0(w, v) =
∫

Ω

∇w · ∇v, f(v) =
∫

Ω

v, g(w) = |w|2/3w, (13)

where Ω =]0, 1[∈ IR, w and v ∈ H1
0 (Ω), and µ ∈ D ≡ [0.01, 1]; note the solution

u(µ) develops a boundary layer at x = 0 and x = 1 for µ close to 0.01.

4note that the precomputations involved in the greedy construction of the interpolation points
and the evaluation of the interpolating functions that require of the order O(MN 2) have to be

taken into account, offline, but not for the online evaluation of new u( · , µ)
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M ‖f( · , µ)− IM [f( · , µ)]‖L∞(Ωrec) ΛM

2 8.60E – 1 1.51
3 4.19E – 1 1.69
4 2.74E – 1 1.98
5 1.24E – 1 2.43
6 9.80E – 2 3.16
7 6.59E – 2 5.14
8 6.00E – 2 3.89
9 9.10E – 3 2.48
10 3.88E – 3 3.28
11 1.74E – 3 4.38
12 6.44E – 4 4.56
13 2.82E – 4 4.24
14 6.35E – 5 5.94
15 6.09E – 6 5.23

Table 3. Actual error between u( · , µ) of Section 4.2 and its iter-
polation together with the associated Lebesgue constant.

We now introduce the nested samples, Su
N = {µu

1 ∈ D, . . . , µu
N ∈ D}, 1 ≤

N ≤ Nmax, and associated nested Lagrangian [21] reduced-basis spaces Wu
N =

span{u(µu
n), 1 ≤ n ≤ N} = span {ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, where

u(µu
n) is the solution of (12) at µ = µu

n and ζn, 1 ≤ n ≤ N are the orthonormalized
bases of u(µu

n), 1 ≤ n ≤ N with respect to (·, ·)X (obtained through a Gram-
Schmidt process). The classical reduced-basis approximation [13, 15, 22, 24, 8]
is then obtained by a standard Galerkin projection: given µ ∈ D, uN (µ) ∈ Wu

N

satisfies

µa0(uN (µ), v) +
∫

Ω

g(uN (µ)) v = f(v), ∀v ∈Wu
N . (14)

Unfortunately, the presence of strong nonlinearity in g does not allow an efficient
offline-online procedure outlined in [23, 18]. As a result, although the dimension of
the system (14) is small, solving it is actually expensive [4, 7].

To obtain an inexpensive reduced-oder model of the nonlinear problem (12), we
apply the empirical interpolation procedure on {g(u(µ)), µ ∈ Ξµ} of size M = 51
to develop a collateral reduced-basis expansion g

uN,M

M (x;µ) for the nonlinear term
g(uN (µ)) as

g
uN,M

M (x;µ) =
M∑

m=1

ϕM m(µ)qm(x) . (15)

We next replace g(uN (µ)) — as required in our reduced-basis projection for uN (µ)
— with g

uN,M

M (x;µ). Our reduced-basis approximation is thus: given µ ∈ D,
uN,M (µ) ∈Wu

N satisfies

µa0(uN,M (µ), v) +
∫

Ω

g
uN,M

M (x;µ)v = f(v), ∀ v ∈Wu
N . (16)

Inserting uN,M (µ) =
∑N

j=1 uN,M j(µ)ζj and (15) into (16) yields

µ
N∑

j=1

AN
i juN,M j(µ) +

M∑
m=1

CN,M
i m ϕM m(µ) = FN i, 1 ≤ i ≤ N ; (17)
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where AN ∈ IRN×N , CN,M ∈ IRN×M , FN ∈ IRN are given by AN
i j = a0(ζj , ζi), 1 ≤

i, j ≤ N , CN,M
i m =

∫
Ω
qmζi, 1 ≤ i ≤ N, 1 ≤ m ≤ M , and FN i = f(ζi), 1 ≤ i ≤ N ,

respectively.
Furthermore, we note that ϕM (µ) ∈ IRM is given by
M∑

k=1

BM
m kϕM k(µ) = g(uN,M (xi, µ)) = g

( N∑
n=1

uN,M n(µ)ζn(xm)
)
, 1 ≤ m ≤M .

(18)
We then substitute ϕM (µ) from (18) into (17) and let DN,M = CN,M (BM )−1 to
obtain the following nonlinear algebraic system

µ
N∑

j=1

AN
i juN,M j(µ) +

M∑
m=1

DN,M
i m g

( N∑
n=1

ζn(xm)uN,M n(µ)
)

= FN i, 1 ≤ i ≤ N ,

(19)
which can be solved efficiently by using a Newton method [4, 7] to yield uN,M j(µ), 1 ≤
j ≤ N, for any parameter value µ in D.

In a similar manner, to get a comparison of this approach with a more classical
one, we also develop a reduced-order model based on a coefficient-function approxi-
mation of the nonlinear term g(uN (µ)) using polynomials xm, 0 ≤ m ≤M − 1, and
associated Chebyshev points xche

m = (cos((2m+1)π/(2M+2))+1)/2, 0 ≤ m ≤M−1.
We denote by uche

N,M (µ) the reduced-basis approximation using the polynomial ap-
proach with Chebyshev points.

We now present numerical results obtained for this particular example. For this
purpose, we introduce a parameter sample Ξt ⊂ D of size 100; we then define εgM =
maxµ∈Ξt

‖g(u(µ))−gu
M (x;µ)‖L∞(Ω), ε

g,che
M = maxµ∈Ξt

‖g(u(µ))−gu,che
M (x;µ)‖L∞(Ω),

εuN,M = maxµ∈Ξt
‖u(µ)−uN,M (µ)‖L∞(Ω), ε

u,che
N,M = maxµ∈Ξt

‖u(µ)−uche
N,M (µ)‖L∞(Ω);

here gu
M (x;µ) and gu,che

M (x;µ) are the approximations of g(u(µ)) obtained using the
magic points approach and polynomial approach, respectively. We present in Ta-
ble 4 εgM and εg,che

M for different values ofM . We see that εgM converges exponentially
with M and significantly faster than εg,che

M . We also tabulate in Table 5 εuN,M and
εu,che
N,M as a function of N for M = 8. Not surprising, we observe the same conver-

gence behavior in terms of the reduced-basis dimension N : while the reduced-basis
error εuN,M decays exponentially fast with N , the error εu,che

N,M decreases with N
for N ≤ 5 and then maintains a fixed value of 3.80E – 03 for N > 5 due to poor
approximation of the nonlinearity as observed in Table 4.

5.2. One-dimensional quantum harmonic oscillator. We now look at another
example of a model reduction method, the modal expansion technique [2]. For linear
partial differential equations, the projection onto the eigenmodes of the operator
leads to a set of decoupled differential equations. This is particularly advantageous
in dynamic response analysis due to significant reductions in problem size. How-
ever, the initial projection of the initial condition onto the eigenspace is usually
required, leading to operation which depends on N , the discretization of the under-
lying computational domain. We will demonstrate how the empirical interpolation
technique provides an inexpensive surrogate to this projection step. As an example,
we consider a time-dependent Schrödinger equation for a harmonic oscillator:

i
∂

∂t
ψ(x, t) = −1

2
∂2

∂x2
ψ(x, t) +

1
2
ω2

0x
2ψ(x, t), (20)
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M εgM εg,che
M

1 2.43E – 01 9.94E – 01
2 1.62E – 02 7.35E – 01
3 1.86E – 03 1.73E – 01
4 1.28E – 04 1.63E – 01
5 4.21E – 06 1.10E – 01
6 2.18E – 07 8.84E – 02
7 1.15E – 08 6.75E – 02
8 9.22E – 10 4.57E – 02

Table 4. Results for the approximation of g(u(µ)): εgM and εg,che
M

as a function of M .

N M εuN,M εu,che
N,M

1 8 2.82E – 01 2.82E – 01
2 8 1.50E – 02 1.50E – 02
3 8 5.55E – 04 8.84E – 03
4 8 4.78E – 05 3.96E – 03
5 8 5.71E – 07 3.92E – 03
6 8 4.59E – 08 3.80E – 03
7 8 1.23E – 09 3.80E – 03
8 8 1.93E – 10 3.80E – 03

Table 5. Results for the reduced-basis approximation: εuN,M and
εu,che
N,M as a function of N for M = 8.

where x ∈ Ω1d,SHO ≡ [−15, 15]. Given an initial solution ψ(x, 0), the solution can
be approximated by

ψ(x, t) =
n∑

i=0

ciφi(x)e−iEit, (21)

where n+ 1 is the number of basis functions considered; φi(x) and Ei are solution
to the following static harmonic oscillator equation

Eiφi(x) = −1
2
∂2

∂x2
φi(x) +

1
2
ω2

0x
2φi(x); (22)

and ci is given by

ci =
∫ ∞

−∞
φ∗i (x)ψ(x, 0)dx, 0 ≤ i ≤ n. (23)

An evaluation of (22) based on a finite element discretization of dimension N will
then require an order nN computational complexity for each subsequent evaluation
of (23). In situations where we need to evaluate (20) for rapidly varying initial
conditions, this can be unacceptable. An empirical interpolation procedure can
however reduce the cost of evaluating (23) significantly.

Given Wφ
n = {φi(x), x ∈ Ω1d,SHO, 0 ≤ i ≤ n}, we can construct XM and the

associated set of magic points TM = {xi, 0 ≤ i ≤ n} and the interpolation matrix
BM based on the empirical interpolation procedure. Here, M = n + 1. Then we
approximate ci by c̃i, where

∑n
j=0B

M
ij c̃j = ψ(xi, 0), 0 ≤ i ≤ n. The operations
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count is only O((n + 1)2). We achieve an operation count that is independent of
N . The growth of the Lebesgue constant ΛM with M is shown in Figure 7 — they
are in general small.

We now consider a particular example where ψ(x, 0) =
(

ω
π

)1/4
e

1
2 ω(x−x0)

2
. We

first define Ξx ∈ [−15, 15] of size 1000 and Ξt ∈ [0, 5] of size 1000. We then de-
fine εM = maxt∈Ξt

maxx∈Ξx
|ψN (x, t)−ψM (x, t)|/|ψN (x, t)|, where ψN is evaluated

based on (23) and ψM is based on our empirical interpolation approximation. Fig-
ure 8 shows that the error εM decreases very rapidly with M .

6. An a posteriori analysis. In this section, we propose an a posteriori error
estimator for our approximation. In [7], it was proven that if the function we are
approximating, say ϕ, is in XM+1, then εM ≡ ‖ϕ − IM [ϕ]‖L∞(Ω) = ε̂M where
ε̂M = |ϕ(xM+1) − IM [ϕ(xM+1)]|. However, in general ϕ /∈ XM+1 and hence ‖ϕ −
IM [ϕ]‖L∞(Ω) ≥ ε̂M , and ε̂M is thus a lower bound. However, if ‖ϕ − IMϕ‖L∞(Ω)

→ 0 very fast, we expect the effectivity, ηM = εM/ε̂M to be good. In addition,
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n M |ϕ1d(xM+1)− IM [ϕ1d(xM+1)]| ‖ϕ1d − IMϕ1d‖L∞ ηM

2 3 7.27E – 2 7.79E – 2 1.07
4 5 7.47E – 3 7.52E – 3 1.01
6 7 6.18E – 4 6.70E – 4 1.08
8 9 3.84E – 5 3.84E – 5 1.00
10 11 1.69E – 6 1.72E – 6 1.02
12 13 3.08E – 8 4.02E – 8 1.30
14 15 1.65E – 9 1.65E – 9 1.00
16 17 6.33E – 11 6.73E – 11 1.06
18 19 1.39E – 12 1.39E – 12 1.00
20 21 2.50E – 14 2.51E – 14 1.00
Table 6. Comparison between the error estimate and the actual
error, for ϕ1d.

n M |ϕ2d(xM+1)− IM [ϕ2d(xM+1)]| ‖ϕ2d − IMϕ2d‖L∞ ηM

2 9 1.13E – 1 6.32E – 1 5.59
4 25 1.43E – 1 1.66E – 1 1.16
6 49 2.03E – 2 2.24E – 2 1.10
8 81 7.23E – 4 1.46E – 3 2.02
10 121 5.36E – 5 1.06E – 4 1.98
12 169 2.76E – 6 2.78E – 6 1.01
14 225 1.04E – 8 1.31E – 7 12.60
16 289 2.67E – 9 4.88E – 9 1.83
18 361 4.98E – 11 1.16E – 10 2.33
20 441 2.57E – 12 2.78E – 12 1.08
Table 7. Comparison between the error estimate and the actual
error, for ϕ2d.

determination of xM+1 is very inexpensive — we only need to do an additional
iteration of the empirical interpolation procedure.

As an example, we choose to approximate through polynomial interpolation on
magic points a Gaussian function, ϕ1d(x) = e−x2

in one dimension (on a segment),
and ϕ2d(x, y) = e−(x2+y2) in two dimensions (over a triangle). Table 6 and 7
show that results are good — ηM is in general quite close to unity. In the one
dimensional case, a good estimator is obtained for IM at all M ≤Mmax. However,
in the two dimensional case, a good estimator is only obtained for IM when M =
1
2 (n + 1)(n + 2). This is because the polynomial approximation of the Gaussian
function is good only if all monomials of order≤ n is included. Thus, good effectivity
is always obtained for the one dimensional case, and 1

2 (n + 1)(n + 2) for the two
dimensional case. For a non-regular function, we obtain similar results: in Table
8, we show the error estimate and the actual error resulting from a polynomial
approximation of ϕirr = |x3y3| on the triangle. Again, the effectivities is good when
the complete set of monomials of degree ≤ n is included, but due to discontinuity
in higher derivative, we have a much lower convergence rate.

7. Conclusions. We have presented a general multipurpose interpolation method
for selecting interpolation points which we dub “magic points”. For the problems in



400 Y. MADAY, N. C. NGUYEN, A. T. PATERA AND G. S. H. PAU

n M |ϕirr(xM+1)− IM [ϕirr(xM+1)]| ‖ϕirr − IMϕirr‖L∞ ηM

2 9 7.95E – 2 1.59E – 1 2.00
4 25 3.88E – 2 1.47E – 1 3.79
6 49 2.44E – 3 1.95E – 2 8.00
8 81 4.26E – 3 2.42E – 2 5.68
10 121 1.37E – 3 3.74E – 3 2.73
12 169 3.75E – 3 5.66E – 3 1.51
14 225 2.96E – 4 5.69E – 4 1.92
16 289 5.01E – 5 5.80E – 4 11.58
18 361 1.29E – 4 3.00E – 4 2.33
20 441 3.09E – 4 5.72E – 4 1.85
Table 8. Comparison between the error estimate and the actual
error, for ϕirr.

which the interpolating functions are not given, our method also provides the con-
struction of such functions. The proposed method is very simple to implement and
extremely efficient, since unlike many other methods it does not require involved
optimization procedures (as the one used for optimizing the Lebesgue constant).
We illustrate many of its attractive features through several numerical examples in
polynomial interpolation, parameter-dependent functions, and the approximation
of solutions of parametrized PDEs. In the case of polynomial interpolation, results
show that the distribution of magic points is quite similar to that of optimal interpo-
lation points and that the Lebesgue constant is close to the optimal values reported
in the open literature. We further demonstrate the versality of the method with
non-standard domains whereby we are not aware of any optimal (or even near opti-
mal) point settings. In approximating parameter-dependent functions, the method
is superior to classical polynomial interpolation methods (e.g., Chebyshev points
with polynomial approximation) thanks to its good choice of both interpolating
function and point sets that are adaptive to the parameter dependence. In ap-
proximating the solution of parametrized PDE, the method helps to establish an
efficient reduced order model by constructing a coefficient-function approximation
of the nonlinear terms, which results in significant computational savings relative
to standard discretization methods.

Lastly, we wish to emphasize that the method can be applicable and may prove
advantageous in a variety of applications involving image and pattern recognition,
data compression, field reconstruction, fast rendering and visualization in anima-
tion, numerical integration of smooth functions on irregular domains. (See [17, 16]
for application of a similar method to face recognition and optimal sensor placement
for field reconstruction.) The good performance and the simplicity of the present
method warrant further investigations for these applications.

Appendix A. An example of a bad Lebesgue constant. Let us consider two
sequences of interlaced and increasing real numbers a0 < b0 < a1 < b1 < · · · < ai <
bi < ai+1 < . . . and let χi be equal to 1 over ]ai, bi[ and 0 elsewhere.

For i ≥ 1, we denote by ϕi the L∞ function given by

ϕi = χ0 + χi −
∞∑

j=i+1

χj (24)
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Then it is an easy matter to realize that the empirical interpolation procedure
may actually rank the interpolating function as they are (i.e. leave them in the
same order) and choose the interpolation points xi = ai+bi

2 . (Actually, there are
multiple choices here for the points that realize the arg maxx∈IR |ϕi|; we could avoid
by multiplying the ϕi by a suitable slowly decreasing function.)

Then, for any given M , the Lagrangian functions hM
i are defined by hM

M = ϕM

and, for any i, 1 ≤ i < M

hM
i = ϕi +

M∑
j=i+1

hM
j (25)

so that, by induction, hM
i (x0) = 2M−i, which is the L∞ norm of hM

i . The Lebesgue
constant, being the sum of these L∞ norms, then gives 2M − 1.

Appendix B. Proper sampling procedure of the empirical interpolation
approach. We adapt to our interpolation greedy construction, the analysis pre-
sented in [3] where the best fit approximation is analyzed. Let us denote by rM the
difference between u and its interpolation over the points xi, i = 1, . . . ,M , i.e.

rM (x;u) = u(x)−
M−1∑
j=1

αM,j(u)
rj(x)
rj(xj)

. (26)

where the coefficients αM,j(u) satisfy

∀i, i = 1, . . . ,M
M∑

j=1

αM,j(u)qj(xi) = u(xi)

taking into account the triangular structure (with only 1 on the diagonal) we get

αM,i(u) = u(xi)−
i−1∑
j=1

αM,j(u)qj(xi)

or again (noticing that αM,j(u) is actually independent of M

αM,i(u)
ri(xi)

=
ri(xi;u)
ri(xi)

which is, in absolute value, smaller than 1 from the argmax definition of ui.
It is then an easy matter to realize by induction, that for ` < M

r`(x) ≡ r`(x, u`) = u`(x) +
`−1∑
j=1

γ`
j(u)uj(x), (27)

with |γ`
i | ≤ 2`−i−1. From the hypothesis stated in theorem 2.4, we derive that

there exists vj in ZM−1 such that ‖uj(x) − vj‖Y ≤ ce−αM so that, by setting
v` = vµ`

+
∑`−1

j=1 γ
`
jvµj

we get

‖r` − v`‖X ≤ c2`−1e−αM . (28)

Since dim XM−1 = M − 1, there exists coefficients βi 1 ≤ i ≤ M , with ‖β‖`∞ = 1
such that

∑M
i=1 βivi = 0. Then

‖
M∑
i=1

βiri‖X = ‖
M∑
i=1

βi(ri − vi)‖X ≤
√
M2M−1e−αM , (29)
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and due to the imbedding of Y into L∞(Ω),

‖
M∑
i=1

βiri‖L∞(Ω) ≤ c
√
M2M−1e−αM . (30)

From the definition of the points xi, and using the fact that rj(xi) = 0 if j > i, we
get first that |β1||r1(x1)| ≤ c

√
M2M−1e−αM . Then

|β2||r2(x2)| ≤ c
√
M2M−1e−αM + |β1||r1(x2)|, (31)

again from the definition of x1

|β2||r2(x2)| ≤ c
√
M2M−1e−αM + |β1||r1(x1)| ≤ 2c

√
M2M−1e−αM , (32)

and recursively, for any m ≤M

|βm||rm(xm)| ≤ 2m−1c
√
M2M−1e−αM . (33)

Since there exists one j such that βj = 1, we deduce, for any m ≥ j

|rm(xm)| ≤ |rj(xj)| ≤ 2j−1c
√
M2M−1e−αM , (34)

from which we can further deduce that, by the maximization definition of xm,

‖rm‖L∞(Ω) ≤ c
√
M2M+m−2e−αM . (35)

Hence by the maximization definition of µm, for any µ ∈ D,

‖u( · , µ)− Im[u( · , µ)]‖L∞(Ω) ≤ ‖rm‖L∞ ≤ c
√
M2M+m−2e−αM . (36)

Besides, it is an easy matter to check that, for any continuous functions ϕ,

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ ‖ϕ− Im−1[ϕ]− Im[ϕ− Im−1[ϕ]]‖L∞(Ω) (37)

since Im[Im−1ϕ] = Im−1ϕ. Then,

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ c‖ϕ− Im−1[ϕ]‖L∞(Ω) + ‖Im[ϕ]− Im−1[ϕ]‖L∞(Ω). (38)

We note now that Im[ϕ]−Im−1[ϕ] is an element of span {u( · , µi), 1 ≤ i ≤ m} that
vanishes at any xk; 1 ≤ k ≤ m− 1 so that it is proportional to rm, from which we
deduce it is maximum at xm. Since Im[ϕ]−Im−1[ϕ] attains its maximum at point
xm for which Imϕ coincides with ϕ, we then have

‖Im[ϕ]− Im−1[ϕ]‖L∞(Ω) = |ϕ(xm)− Im−1[ϕ](xm)|
≤ max

x∈Ω
|ϕ(x)− Im−1[ϕ](x)|

≡ ‖ϕ− Im−1[ϕ]‖L∞(Ω). (39)

This leads to the estimate, ∀m, 1 ≤ m ≤M

‖ϕ− Im[ϕ]‖L∞(Ω) ≤ 2‖ϕ− Im−1[ϕ]‖L∞(Ω). (40)

We finally derive

‖u( · , µ)− IM [u( · , µ)]‖L∞(Ω) ≤ 2M−j‖rj‖L∞(Ω) ≤ c22M
√
Me−αM , (41)

and the result is proven thanks to the conditions over α.
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